Trabecular volumetric bone mineral density of the occipital bone at preferred screw placement sites measured by quantitative computed tomography

Manuel Moser, 1 Dominik Adi Amini, 1,2 Lisa Oezel, 1,3 Jennifer Shue, 1 John A. Carrino, 4 Andrew A. Sama, 1 Frank P. Cammisa, 1 Federico P. Girardi, 1 Alexander P. Hughes 1

1 Spine Care Institute, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
2 Department of Orthopedic Surgery and Traumatology, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
3 Department of Orthopedic Surgery and Traumatology, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
4 Department of Radiology and Imaging, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA

INTRODUCTION

Occipitocervical fixation commonly includes the use of occipital plates, and bone screws of at least 8 mm length are recommended for adequate screw purchase. 1,2 The occipital bone reaches its maximum thickness at the external occipital protuberance (EOP). 2,3 Biomechanical studies showed that unicortical screw fixation at the EOP is as strong as bicortical fixation in other locations, 4 possibly highlighting the influence of the trabecular table on pull-out strength. However, studies that reliably quantify trabecular bone mineral density (BMD) in this area and the upper cervical spine are lacking.

OBJECTIVES

Our primary study aim investigated volumetric BMD (vBMD) of the trabecular table at the EOP and the upper cervical vertebral. Our secondary aim identified age- and sex-related differences in vBMD values at these locations. Given the structural differences between occipital and load-bearing cervical bone, we hypothesized that the trabecular table at the EOP has a higher vBMD than at the upper cervical levels that is less prone to age-related changes.

METHODS

Patients ≥18 years who underwent non-contrast-enhanced computed tomography (CT) of the cervical spine that included the occipital bone up to the EOP between July 2007 and November 2020 at a single academic institution were considered eligible for this study. Trabecular vBMD was assessed by phantomless asynchronously calibrated quantitative computed tomography (QCT) measurements that were performed using Mindways QCT Pro software (Mindways Software, Inc., Austin, TX, USA). 2,4 Measurements were taken exclusively of trabecular bone at the EOP, both C1 lateral masses, and the C2 vertebral body, avoiding apparent sclerotic regions or diploic veins. An elliptical region of interest (ROI) was placed in the midline at the EOP in axial view for the occipital measurements. In the sagittal view, this resulted in a rectangular ROI of 9 mm in length that was manually adjusted further to cover a potential screw path at the EOP, ideally extending 4.5 mm above and below the region of greatest bone thickness. Measurements of total bone thickness, trabecular and cortical tables were performed on multiplanar reconstructed CT images.

RESULTS

86 patients (female, 37.2%) were included in the final analysis. The patient population was 81.4% Caucasian, with a mean age at CT of 62.3±13.1 years. Total bone thickness at the EOP was 16.7±3.4 mm (range 9.7 - 25.9 mm), with a ratio of trabecular to total bone thickness of 0.44. Overall, trabecular vBMD (mean ± SD) was significantly higher at the EOP than at C1 and C2 (EOP = 612.3±145.8 mg/cm², C1 average = 290.3±66.5 mg/cm², C2 = 305.8±78.8 mg/cm², p < 0.001). Cervical vBMD was significantly greater in men compared to women (Fig. 1A). In individuals older than 65 years of age (n = 39), vBMD was significantly lower at C1 (270.47±67.82 versus 306.83±61.37 mg/cm²; p = 0.015), and C2 (274.51±82.71 versus 331.53±65.81 mg/cm²; p = 0.001), but remained equally high at the EOP (610.36±137.86 versus 613.89±153.49 mg/cm²; p = 0.912) (Fig. 1B). The interobserver reliability was acceptable for the occipital (interclass correlation coefficient (ICC) 0.763) and good for the spinal measurements (0.860).

CONCLUSIONS

The EOP is characterized by considerable anatomic variability among individuals, and the trabecular table in this location has a significantly higher vBMD than the upper cervical vertebral. In contrast to the cervical spine, trabecular vBMD at the EOP remains high in aged populations. These results add to previous studies and suggest that unicortical screw fixation in this area might also be considered in patients of advanced age, potentially reducing the risk of injury to the venous sinuses.

REFERENCES


Figure 1. Subgroup analysis of vBMD (mean ± SD) according to sex (A) and age (B) (* indicates statistical significance)

Figure 2. Scatter plots including linear regression lines for BMD: (A) EOP and C1; (B) EOP and C2.
Trabecular volumetric bone mineral density of the occipital bone at preferred screw placement sites measured by quantitative computed tomography

Manuel Moser, MD1*, Dominik Adl Amini, MD1,2*, Lisa Oezel, MD1,3, Jennifer Shue, MS1, John A. Carrino, MD, MPH4, Andrew A. Sama, MD1, Frank P. Cammisa, MD1, Federico P. Girardi, MD1, Alexander P. Hughes, MD1*#

1 Spine Care Institute, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
2 Department of Orthopedic Surgery and Traumatology, Charité Berlin, University Hospital, Charitéplatz 1, 10117 Berlin, Germany
3 Department of Orthopedic Surgery and Traumatology, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
4 Department of Radiology and Imaging, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA

*ORCID:
Manuel Moser, 0000-0003-4517-359X
Dominik Adl Amini, 0000-0002-8555-7304
Alexander P. Hughes, 0000-0001-7293-9672

Presenting author information:
Manuel Moser, MD
Spine Care Institute, Hospital for Special Surgery, Weill Cornell Medicine
535 East 70th Street, New York, NY 10021, USA
Phone +1 212 774 2992
Fax +1 212 774 7062
Email moserma@hss.edu

#Corresponding author information:
Alexander P. Hughes, MD
Spine Care Institute, Hospital for Special Surgery, Weill Cornell Medicine
535 East 70th Street, New York, NY 10021, USA
Phone +1 212 774 2992
Fax +1 212 774 7062
Email hughesa@hss.edu
Conflicts of interest disclosure

MM, DAA, LO, JS, have no relevant financial or non-financial interests to disclose.

JAC declares financial interests: Consulting: Covera Health; Globus Medical, Inc; Image Biopsy Lab; Pfizer, Inc; Simplify Medical; Scientific Advisory Board: Carestream, Image Analysis Group;

AAS declares financial interests: Royalties: Ortho Development Corp; Private investments: Vestia Ventures MiRUS Investment LLC, ISPH II LLC, ISPH 3 LLC, VBros Venture Partners X Centinel Spine; Consulting: Clariance Inc, Kuros Bioscience AG, Medical Device Business Services Inc; Speaking and Teaching Arrangements: DePuy Synthes Products Inc; Trips/Travel: Medical Device Business Services Inc; Research Support: Spinal Kinetcs Inc;


APH declares financial interests: Research Support: Kuros Biosciences AG; Fellowship Support: NuVasive Inc, Kuros Bioscience B.V.;