Discrepancy between radiographic shoulder balance and cosmetic shoulder balance in adolescent idiopathic scoliosis patients with double thoracic curve

Xu-sheng Qiu · Wei-wei Ma · Wei-guo Li · Bin Wang · Yang Yu · Ze-zhang Zhu · Bang-ping Qian · Feng Zhu · Xu Sun · Bobby K. W. Ng · Jack C. Y. Cheng · Yong Qiu

How Well Does Radiological Measurements Correlate With Cosmetic Indices in Adolescent Idiopathic Scoliosis With Lenke 5, 6 Curve Types?

Yong Qiu, MD,*† Xu-sheng Qiu, PhD,* Wei-wei Ma, MD,* Bin Wang, MD,* Yang Yu, MD,* Ze-zhang Zhu, PhD,* Bang-ping Qian, PhD,* Feng Zhu, PhD,* Xu Sun, PhD,* Bobby K. W. Ng, FRCS,†‡ and Jack C. Y. Cheng, MD†‡

- Radiographic parameters could only partially reflect cosmetic parameters for AIS patients
- How about CS?
Methods

Subjects: **Inclusion Criteria**

- Diagnosed as CS with right thoracic curve as the main curve (apex T5 - T12),
- With normal sagittal profile (TK < 50°)
- Age 10 - 18y
- BMI < 25
- AIS patients who were well matched to the CS group in terms of age, sex, apex and Cobb angle of main curve (≤ 5°)
Radiographic parameters

- **SHD**
- **T1 tilt**
- **AVT**

#22563 F 13y T6-8 分节不良
Cosmetic parameters

#14485 M 14y
T7-8T7-8 segmentation defects

SAI1

SAI2

SA

AA
Cosmetic parameters

Thoracolumbar area index (TLAI)

Right and left waist angle difference (RLWAD)

Hump index

#14485 M 14y
T7-8 segmentation defects
Results

<table>
<thead>
<tr>
<th></th>
<th>CS (n=17)</th>
<th>AIS (n=17)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>13.8±1.8</td>
<td>14.7±2.1</td>
<td>0.171</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>2/15</td>
<td>2/15</td>
<td>-</td>
</tr>
<tr>
<td>Radiographic data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobb (°)</td>
<td>56.4±9.0</td>
<td>55.8±11.0</td>
<td>0.804</td>
</tr>
<tr>
<td>CB</td>
<td>-4.8±15.0</td>
<td>0.2±21.7</td>
<td>0.435</td>
</tr>
<tr>
<td>AVT</td>
<td>42.4±21.4</td>
<td>43.1±20.8</td>
<td>0.919</td>
</tr>
<tr>
<td>SHD</td>
<td>-10.0±14.5</td>
<td>-11.6±10.0</td>
<td>0.713</td>
</tr>
<tr>
<td>T1 tilt (°)</td>
<td>-0.3±7.0</td>
<td>-0.3±7.1</td>
<td>0.983</td>
</tr>
<tr>
<td>CA (°)</td>
<td>-9.0±8.6</td>
<td>-7.4±7.0</td>
<td>0.501</td>
</tr>
<tr>
<td>CRCI</td>
<td>-9.0±8.6</td>
<td>-7.4±7.0</td>
<td>0.566</td>
</tr>
<tr>
<td>Cosmetic</td>
<td>CS (n=17)</td>
<td>AIS (n=17)</td>
<td>P value</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SAI1</td>
<td>0.91±0.10</td>
<td>0.98±0.10</td>
<td>0.027</td>
</tr>
<tr>
<td>SAI2</td>
<td>0.87±0.16</td>
<td>0.96±0.13</td>
<td>0.041</td>
</tr>
<tr>
<td>SA</td>
<td>-1.3±2.8</td>
<td>-0.5±3.0</td>
<td>0.435</td>
</tr>
<tr>
<td>AA</td>
<td>-3.6±2.8</td>
<td>-3.5±2.7</td>
<td>0.952</td>
</tr>
<tr>
<td>Hump index (°)</td>
<td>-9.8±4.6</td>
<td>-7.6±5.3</td>
<td>0.205</td>
</tr>
<tr>
<td>TLAI</td>
<td>0.69±0.15</td>
<td>0.75±0.11</td>
<td>0.158</td>
</tr>
<tr>
<td>RLWAD (°)</td>
<td>-2.1±12.9</td>
<td>-0.8±8.3</td>
<td>0.732</td>
</tr>
</tbody>
</table>
Correlation analysis

Correlations between cosmesis and the radiographic measurements in CS

<table>
<thead>
<tr>
<th></th>
<th>Cobb</th>
<th>CB</th>
<th>AVT</th>
<th>SHD</th>
<th>T1PA</th>
<th>CA</th>
<th>CRCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAI1</td>
<td>Correlation</td>
<td>0.252</td>
<td>0.019</td>
<td>-0.135</td>
<td>0.235</td>
<td>0.697</td>
<td>0.366</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td>0.329</td>
<td>0.942</td>
<td>0.604</td>
<td>0.364</td>
<td>0.002</td>
<td>0.148</td>
</tr>
<tr>
<td>SAI2</td>
<td>Correlation</td>
<td>0.340</td>
<td>0.112</td>
<td>-0.281</td>
<td>0.219</td>
<td>0.698</td>
<td>0.366</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td>0.181</td>
<td>0.669</td>
<td>0.275</td>
<td>0.398</td>
<td>0.002</td>
<td>0.148</td>
</tr>
<tr>
<td>SA</td>
<td>Correlation</td>
<td>0.200</td>
<td>-0.133</td>
<td>-0.025</td>
<td>0.474</td>
<td>0.096</td>
<td>0.580</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td>0.443</td>
<td>0.612</td>
<td>0.923</td>
<td>0.054</td>
<td>0.715</td>
<td>0.015</td>
</tr>
<tr>
<td>AA</td>
<td>Correlation</td>
<td>0.054</td>
<td>0.119</td>
<td>0.126</td>
<td>0.612</td>
<td>-0.162</td>
<td>0.674</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td>0.836</td>
<td>0.650</td>
<td>0.630</td>
<td>0.009</td>
<td>0.535</td>
<td>0.003</td>
</tr>
<tr>
<td>Hump index</td>
<td>Correlation</td>
<td>-0.114</td>
<td>-0.317</td>
<td>-0.217</td>
<td>0.152</td>
<td>0.297</td>
<td>0.192</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td>0.662</td>
<td>0.215</td>
<td>0.403</td>
<td>0.561</td>
<td>0.247</td>
<td>0.461</td>
</tr>
<tr>
<td>LAI</td>
<td>Correlation</td>
<td>-0.125</td>
<td>-0.360</td>
<td>-0.734</td>
<td>0.244</td>
<td>0.572</td>
<td>0.264</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td>0.633</td>
<td>0.156</td>
<td>0.001</td>
<td>0.345</td>
<td>0.016</td>
<td>0.306</td>
</tr>
<tr>
<td>RLWAD</td>
<td>Correlation</td>
<td>0.448</td>
<td>0.433</td>
<td>0.383</td>
<td>-0.359</td>
<td>0.257</td>
<td>-0.271</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td>0.071</td>
<td>0.082</td>
<td>0.129</td>
<td>0.157</td>
<td>0.320</td>
<td>0.293</td>
</tr>
</tbody>
</table>
Correlation analysis

Correlations between cosmesis and the radiographic measurements in AIS

<table>
<thead>
<tr>
<th></th>
<th>Cobb</th>
<th>CB</th>
<th>AVT</th>
<th>SHD</th>
<th>T1PA</th>
<th>CA</th>
<th>CRCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAI1</td>
<td>Correlation</td>
<td>-0.022</td>
<td>0.204</td>
<td>-0.201</td>
<td>0.699</td>
<td>0.753</td>
<td>0.613</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td>0.932</td>
<td>0.433</td>
<td>0.439</td>
<td>0.002</td>
<td>0.000</td>
<td>0.009</td>
</tr>
<tr>
<td>SAI2</td>
<td>Correlation</td>
<td>-0.019</td>
<td>0.049</td>
<td>-0.286</td>
<td>0.691</td>
<td>0.717</td>
<td>0.713</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td>0.942</td>
<td>0.851</td>
<td>0.265</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>SA</td>
<td>Correlation</td>
<td>0.086</td>
<td>0.112</td>
<td>-0.261</td>
<td>0.489</td>
<td>0.488</td>
<td>0.704</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td>0.743</td>
<td>0.669</td>
<td>0.311</td>
<td>0.046</td>
<td>0.047</td>
<td>0.002</td>
</tr>
<tr>
<td>AA</td>
<td>Correlation</td>
<td>-0.184</td>
<td>-0.059</td>
<td>-0.432</td>
<td>0.569</td>
<td>0.395</td>
<td>0.561</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td>0.481</td>
<td>0.822</td>
<td>0.083</td>
<td>0.017</td>
<td>0.116</td>
<td>0.019</td>
</tr>
<tr>
<td>Hump index</td>
<td>Correlation</td>
<td>-0.091</td>
<td>0.263</td>
<td>-0.054</td>
<td>0.530</td>
<td>0.468</td>
<td>0.427</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td>0.729</td>
<td>0.308</td>
<td>0.838</td>
<td>0.029</td>
<td>0.058</td>
<td>0.087</td>
</tr>
<tr>
<td>LAI</td>
<td>Correlation</td>
<td>-0.372</td>
<td>-0.445</td>
<td>-0.798</td>
<td>0.581</td>
<td>0.563</td>
<td>0.437</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td>0.141</td>
<td>0.074</td>
<td>0.000</td>
<td>0.014</td>
<td>0.019</td>
<td>0.079</td>
</tr>
<tr>
<td>RLWAD</td>
<td>Correlation</td>
<td>0.204</td>
<td>-0.081</td>
<td>-0.142</td>
<td>-0.001</td>
<td>-0.156</td>
<td>-0.044</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td>0.432</td>
<td>0.758</td>
<td>0.586</td>
<td>0.997</td>
<td>0.551</td>
<td>0.866</td>
</tr>
</tbody>
</table>
Demo case

SAI1=1.19 SA=1°
SAI2=1.18 AA=-5.1°
LAI=0.93 RLWAD=7°

#17264 M 15y
Lenke 1

#14485 M 14y
T7-8 分节不良

SAI1=0.71 SA=-6.1°
SAI2=0.60 AA=-7.5°
LAI=0.49 RLWAD=-13°
Conclusion

➢ Despite adolescents with idiopathic right-thoracic scoliosis and those with congenital right-thoracic scoliosis shared comparable radiographic patterns, CS patients showed **poorer** cosmesis and **worse** general areal balance.
How well do radiographic parameters correlate with patients’ cosmesis in congenital thoracic scoliosis?

Yanjie Xu, Zongshan Hu, Zezhang Zhu, Yong Qiu, Zhen Liu

Corresponding author: Zhen Liu, E-mail: drliuzhen@163.com

Department of Spine surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
 Disclosure declaration

1. I hereby agree that EUROSPINE records my presentation / lecture if accepted to be given at EUROSPINE 2021 in Gothenburg, Sweden, or via a virtual (hybrid) version of the meeting.
2. I hereby grant an exclusive, royalty-free, irrevocable and perpetual right to EUROSPINE to use, publish and edit the film recordings of my presentation / lecture for the Purpose, including, but not limited to web-based training sessions and webcasts.
3. In case or on my request EUROSPINE provides me with a copy of the film recordings of my presentation / lecture, I hereby undertake not to use such copy for any other purpose than for private or internal, non-profit purposes at the hospital or organization I am employed at.
4. I am aware that I am solely responsible that my presentation / lecture does not infringe any copyrights, trademark rights or other intellectual property rights. I agree to indemnify EUROSPINE, its directors, officers, employees, and agents against any and all loss, cost or damages arising out of or relating to any claim against EUROSPINE’S based on the allegation or fact that the presentation / lecture infringes the intellectual property rights of a third party.
I have read the foregoing declaration before submitting, and fully understand the contents.